代寫MTH5510、代做Matlab程序語言

      時(shí)間:2024-08-13  來源:  作者: 我要糾錯(cuò)



      MTH5510: QRM - Exercises Set 2
      Due date: August 12, 2024;12:00pm;
      Analysis the output of the Matlab code is mandatory. I am not interested just to the Matlab code.
      Hand in stapled hardcopy at the beginning of the tutorial session
      Note: You might want to use Matlab for this exercise; adequately report and comment on your
      results (For a quick introduction to Matlab visit http://www.mathworks.com/access/helpdesk/
      help/pdf_doc/matlab/getstart.pdf)
      Exercise I: This question deals with a portfolio of five stocks. At time t, the values of the stocks
      are S1,t = 100, S2,t = 50, S3,t = 25, S4,t = 75, and S5,t = 150. The portfolio consists of 1 share
      of S1, 3 shares of S2, 5 shares of S3, 2 shares of S4, and 4 shares of S5. These risk factors are
      logarithmic prices and the factor changes have mean zero and standard deviations 10?3, 2 · 10?3,
      3 · 10?3, 1.5 · 10?3, and 2.5 · 10?3, respectively. The risk factors are independent.
      1. Compute VaRα, VaR
      mean
      α , and ESα using Monte Carlo with 10,000 simulations. Do this for
      α = {0.90, 0.91, . . . , 0.99}. Also use the following distributions for the risk factor changes:
       For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(3, μ, σ) for appropriate values of μ and σ
       For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(10, μ, σ) for appropriate values of μ and σ
      For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ t(50, μ, σ) for appropriate values of μ and σ
       For each i ∈ {1, 2, 3, 4, 5}, Xi,t+δ ~ N (μ, σ2)
      Plot the results.
      2. Comment on the following:
       The value of VaRα compared to VaRmeanα
       The value of VaRα and ESα as compared between the four distributions. Are the results
      what you expected?
      Exercise II: This question deals with delta hedged call option. The following are the Black-
      Scholes parameters for a European call option at time t = 0:
      T = 0.5
      rt = 0.05
      σt = 0.2
      St = 100
      K = 100.
      1
      The portfolio consists of long position on the call option, and the corresponding position in the
      stock which makes the portfolio delta neutral. Let ? = 1day, Z1 = log(S), and Z2 = σ (r
      will be considered in this problem). The risk factor changes are normally distributed with mean
      zero. Their standard deviations over one day are 10?3 and 10?4 and their correlation is ?0.5.
      (a) Compute V aRα, V aR
      mean
      α , and ESα for α = 0.95 and α = 0.99 using the following
      methods:
       Monte Carlo full revaluation with 10,000 simulations
       Monte Carlo on the linearized loss with 10,000 simulations
       Variance-covariance method
      Do not neglect the time derivative in any linearizion in this question.
      Exercise III: Let L have the Student t distribution with ν degree of freedom. Derive the
      formula
      ESα(L) =
      (
      gν(t
      ?1
      ν (α))
      1? α
      )(
      ν + (t?1ν (α))2
      ν ? 1
      )



      請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

      標(biāo)簽:

      掃一掃在手機(jī)打開當(dāng)前頁
    1. 上一篇:代寫COMP4337、代做Python編程設(shè)計(jì)
    2. 下一篇:代寫GA.2250、Python/Java程序語言代做
    3. 無相關(guān)信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
      昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
      昆明旅游索道攻略
      昆明旅游索道攻略
    4. 幣安app官網(wǎng)下載 幣安app官網(wǎng)下載

      關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
      ICP備06013414號(hào)-3 公安備 42010502001045

      主站蜘蛛池模板: 广南县| 隆安县| 右玉县| 长春市| 齐河县| 辰溪县| 蒲城县| 乌恰县| 青阳县| 三门县| 竹溪县| 疏附县| 延吉市| 黎城县| 黄石市| 滨海县| 康马县| 女性| 翼城县| 大田县| 兴文县| 天全县| 新和县| 札达县| 江都市| 嵊泗县| 班玛县| 桃园县| 湄潭县| 潍坊市| 银川市| 甘孜县| 临西县| 望城县| 老河口市| 库车县| 榆林市| 博客| 定安县| 周口市| 龙海市|